
Destructor	Templates

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	1.4

1

Learning	Objectives	for	This	Lesson

• By	the	time	you	finish	this	lesson,	you	should	
be	able	to:
– explain	what	a	destructor	template	is
– write	destructor	templates	for	typical	data.

2

DDR	Step	5:	Destructor	Template

• The	destructor	template	(or	just	the	template,	
for	short)	gives	a	skeleton	for	functions	that	
examine	or	use	the	data.

• Once	you	write	the	template,	writing	the	
function	is	just	a	matter	of	filling	in	the	blanks.

• This	step	is	a	little	more	complicated	than	the	
preceding	ones,	so	we	have	a	recipe	for	this,	
too!

3

The	template	recipe
Question Answer
1.	Does	the	data	definition	
distinguish	among	different	
subclasses	of	data?

Write	a	cond with	a clause	for
each subclasses.

2.	How	do	the	subclasses	differ	
from	each	other?

Use	the	differences	to	
formulate	a	condition	per	
clause.

3.	Do	any	of	the	clauses	deal	
with	structured values?

If	so,	add	appropriate	selector	
expressions	to	the	clause.

4.	Do	any	of	the	fields	contain	
compoundor	mixed	data?

If	the	value	of	a	field	is	a	foo,
add	a	call	to	a	foo-fn to	use	it.

4

Let's	see	where	we	are
The	Function	 Design	Recipe

1.	Data	Design

2.	Contract	and	Purpose	
Statement

3. Examples	and	Tests

4.	Design	Strategy

5.	Function	Definition

6.	Program Review

The Data Design	Recipe

1.	What information	needs	to	be	
represented	in	your	program?	
What kind	of	information	is	each	
piece?

2.	Struct Definitions

3. Constructor	Template

4.	Interpretation

5.	Destructor Template

6.	Examples

7.	Review
Question Answer

1.	Does	the	data	definition	
distinguish	among	different	
subclasses	of	data?

Write	a	cond with	a clause	for each
subclasses.

2.	How	do	the	subclasses	differ	from	
each	other?

Use	the	differences	to	formulate	a	
condition	per	clause.

3.	Do	any	of	the	clauses	deal	with	
structured values?

If	so,	add	appropriate	selector	
expressions	to	the	clause.

4.	Do	any	of	the	fields	contain	
compound or	mixed	data?

If	the	value	of	a	field	is	a	foo, add	a	
call	to	a	foo-fn to	use	it. 5

In	this	lesson
Question Answer
1.	Does	the	data	definition	
distinguish	among	different	
subclasses	of	data?

Write	a	cond with	a clause	for
each subclasses.

2.	How	do	the	subclasses	differ	
from	each	other?

Use	the	differences	to	
formulate	a	condition	per	
clause.

3.	Do	any	of	the	clauses	deal	
with	structured values?

If	so,	add	appropriate	selector	
expressions	to	the	clause.

4.	Do	any	of	the	fields	contain	
compoundor	mixed	data?

If	the	value	of	a	field	is	a	foo,
add	a	call	to	a	foo-fn to	use	it.

6

Lesson	Outline

• In	this	lesson,	we'll	learn	how	to	apply	the	
template	recipe	to	itemization,	compound,	
and	mixed	data.

• We’ll	start	with	mixed	data,	and	then	see	how	
to	work	out	the	special	cases	of	compound	
and	itemization	data.

• Let’s	start	with	the	BarOrder example.		We’ll	
follow	the	template	recipe.

7

(define-struct coffee (size type milk?))
(define-struct wine (vineyard year))
(define-struct tea (size type))

;; A BarOrder is one of
;; -- (make-coffee Size Type Boolean)
;; INTERP:
;; size is the size of cup desired
;; type is the origin of the coffee
;; milk? tells whether milk is desired.
;; -- (make-wine Vineyard Year)
;; INTERP:
;; vineyard is the origin of the grapes
;; year is the year of harvest
;; -- (make-tea Size String)
;; INTERP:
;; size is the size of cup desired
;; type is the type of tea (as a string)

Data	Definition	for	mixed	data:	example

The	structure	definitions

Here	it's	clear	what	the	
alternatives	mean,	so	
all	we	need	to	provide	
is	the	interpretation	of	
each	field	in	each	
alternative.

8

Presumably	Size	and	Type	are	
data	types	defined	elsewhere.

Presumably	Vineyard	is	also	a	
data	type	defined	elsewhere.

Writing	the	template	for	BarOrder
;; bo-fn : BarOrder -> ??
(define (bo-fn order) ...)
(cond
[... ...]

(coffee-size order)
(coffee-type order)
(coffee-milk? order))]

[... ...] (...
(wine-vineyard order)
(wine-year order))]

[... ...])
(tea-size order)
(tea-type order))]))

9

Start	by	writing	a	
template	for	the	contract	
and	the	beginning	 of	a	
function	definition

Writing	the	template	for	BarOrder
;; bo-fn : BarOrder -> ??
(define (bo-fn order)
(cond
[... ...]

(coffee-size order)
(coffee-type order)
(coffee-milk? order))]

[... ...] (...
(wine-vineyard order)
(wine-year order))]

[... ...]))
(tea-size order)
(tea-type order))]))

10

1.	Write	a	condwith	as	
many	alternatives	as	
the	data	definition	 has.

Writing	the	template	for	BarOrder
;; bo-fn : BarOrder -> ??
(define (bo-fn order)
(cond
[(coffee? order) ...]

(coffee-size order)
(coffee-type order)
(coffee-milk? order))]

[(wine? order) ...] (...
(wine-vineyard order)
(wine-year order))]

[(tea? order) ...]))
(tea-size order)
(tea-type order))]))

11

2.	Add	predicates	
that	distinguish	
the	different	cases

Writing	the	template	for	BarOrder
;; bo-fn : BarOrder -> ??
(define (bo-fn order)
(cond
[(coffee? order) (...

(coffee-size order)
(coffee-type order)
(coffee-milk? order))]

[(wine? order) (...
(wine-vineyard order)
(wine-year order))]

[(tea? order) (...
(tea-size order)
(tea-type order))]))

12

3.	Add	selectors	to	
extract	the	values	
of	the	fields.

source	file:	01-2-template-examples.rkt

What	is	the	destructor	template	good	
for?

• The	destructor	template	(or	just	the	template,	
for	short)	gives	a	skeleton	for	functions	that	
examine	or	use	the	data.

• The	values	after	the	...	give	us	an	inventory	of	
the	values	we	can	use	on	the	right-hand	side	
of	the	cond.

13

How	to	write	a	template	for	
compound	data

• Just	like	the	one	for	mixed	data,	but	you	don’t	
need	a	cond.

• Here’s	an	example:

14

Template	for	compound	data
(define-struct book (author title on-hand price))

;; A Book is a
;; (make-book String String NonNegInt NonNegInt)
;; Interpretation:
;; author is the author’s name
;; title is the title
;; on-hand is the number of copies on hand
;; price is the price in USD*100

;; book-fn : Book -> ??
(define (book-fn b)

(...
(book-author b)
(book-title b)
(book-on-hand b)
(book-price b)))

The	constructor	
template

The	interpretation	of	
each	field

The	structure	definition

1. No	subclasses,	so	no	
cond.

2. The	selector	
functions	give	you	
the	pieces	of	data	
that	you	can	
calculate	with.

15source	file:	01-2-template-examples.rkt

Template	for	Itemization	Data

• No	selectors,	just	a	cond
• Here’s	a	simple	example:

16

;; A Size is one of
;; -- "small"
;; -- "medium"
;; -- "large"

;; size-fn : Size -> ??
(define (size-fn s)

(cond
[(string=? s "small") ...]
[(string=? s "medium") ...]
[(string=? s "large") ...]))

Summary

• You	should	now	be	able	to	write	destructor	
templates	for	itemization,	compound,	and	
mixed	data.

17

Next	Steps

• Study	the	files	01-2-template-examples.rkt	in	
the	examples	folder.

• Do	Guided	Practice	1.2.
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	the	Guided	Practices
• Go	on	to	the	next	lesson

18

